
 Data Access Table Formats
Data pool preparation

Thu, Jul 25, 1996

Introduction
The Data Access Table is used to specify what happens within a station every

cycle to prepare the data pool. Included in this is a mechanism for executing all
enabled closed loops and server code. At the start of a periodic cycle, the Update
Task is executed. As part of its work, entries in the DAT are processed from
beginning to end. Each entry is an "instruction" to be interpreted before moving
on to the next entry/instruction. The generic pattern of such entries is as follows,
shown as 8 (16-bit) words:

type# table# entry# memory ptr

other info step size count

The hi byte of the first word specifies the entry type#. The lo byte of the first
word is a system table# if it is in the range 00–1F. The meanings of all other fields
depend upon the entry type#. The above layout of these entries is only an
example. Normal entry type#s are positive integers in the range 01–7F. Entry
type#s of 00 or in the range 80–FF are invalid and are ignored during DAT
processing. Entry type 7F is the condition entry.

The table# is normally either 00 (for the channel entries in the Analog Data
Table) or 05 (for the byte entries in the Binary Data Table). The entry# is the entry
of the first data word targeted. The data words are copied into successive entries
of the destination table when a count is specified. Most often, the entry# is a
channel#. Some types use an address pointer which provides a hardware board
address or other memory pointer. The 7th word is often a step size when a
memory ptr is used. The count word is usually a loop count of the number of
consecutive channel readings (destination table entries) to be filled.

Condition entry
Entry type 7F is a special entry that is used to enable/disable an internal flag

that determines whether a non-7F entry is processed or skipped. At the
beginning of DAT processing, this internal flag is initialized to disabled, so that a
7F entry must occur before any non-7F entries will be interpreted for processing.
The only result of processing a 7F entry, which by definition is never disabled, is
to enable or disable the internal flag that determines whether a subsequent non-
7F entry will be processed. The format of a 7F entry is as follows:

7 F 0 0 period phase

lower bit#/chan# upper

counter

state
0=bit#, 1=chan#

At its simplest, this entry merely specifies the period word in cycles. For

processing every cycle, use 1. Such is typically the first entry in a DAT. If
processing is desired every other cycle, use period=2. The other options allow for
enabling the internal flag based upon the state of a bit, or the value of an analog
channel being inside or outside a specified range. For more information, see the
document RDATA Periodicity.

Overview
As an overview of the entry types available for use as DAT instructions, here

is a list by type#:

01 Multiplexed A/D used by Linac
02 (n.u.)
03 Read memory words by bytes
04 Read binary bytes via address list
05 Shift data words
06 Adjust nonlinear RF diode readings
07 Zero-data pedestal adjustment
08 Compute ratio
09 Compute product
0A Compute sum
0B Compute difference
0C Process 1553 command list
0D Auto-setting from memory
0E Wait, post-process 1553 data
0F Average sequence of readings
10 (n.u.)
11 Analog Devices A/D board
12 Sample datapool
13 Read memory words by words
14 High Voltage Digitizer (obs)
15 Beam status counter
16 Capture data on selected cycles (obs)
17 Timer channel clock event counts (obs)
18 Timer channel clock events (obs)
19 AMD9513 timer delays (obs)

1A Read single bytes of memory
1B Read words—mask,shift,BCD options
1C Read clock events from clock board (obs)
1D Invoke local applications
1E Insert data into memory words
1F De-multiplex data words
20 Send data request to SRMs
21 Wait for SRM data reply
22 Map SRM data into data pool
23 (n.u.)
24 Compute counter differences
25 Copy setting word
26 Assemble combined status words
27 Copy memory into data stream
28 Copy from IRM A/D circular buffer
29 De-multiplex binary data bytes
2A Copy words memory-memory
2B Copy bytes memory-memory
2C Copy FIFO to memory
2D Save all readings in present cycle

Some entry types access data from various hardware interfaces. Some modify
data already collected in various ways. In particular, entry 1D allows for
processing all local applications, some of which may generate output data for
inclusion in the data pool. Much of the particularization, or configuration, of a
station stems from the design of its data access table entries.

Editing DAT entries
Armed with the detailed specifications, one can enter DAT entries using a

memory dump page. If this is done, one should take care, as the DAT is scanned
every cycle, so it is "live." As changes made in this way are usually made one
word at a time, it may be wise to disable an entry while it is being modified, say
by setting the $80 bit in the type# byte. Remove this sign bit when the rest of the
entry is ready. This form of raw editing of the DAT is not for the squeamish.

Data Access Table Formats Mon, Aug 26, 1996 page 2

Another means of editing the DAT is provided by a Unix tool called xxxxx. It
operates by reading up the entire DAT and producing a text file version of it,
which is then edited and downloaded all at once. See document xxxxxx.

DAT entry formats
A brief description follows for each DAT entry type, grouped into related

types. In some cases, additional details can be found in other related documents.

Accessing memory data

Read memory words by bytes

0 3 0 0 chan# memory ptr

— step size count

Words are copied (accessed by bytes) starting at the memory address given,
advancing by the step size for each destination table entry (chan#). If the memory
ptr refers to data stored in consecutive words, the step size would be 2.

Read memory words by words

1 3 0 0 chan# memory ptr

— step size count

Words are copied (accessed by words) starting at the memory address given,
advancing by the step size for each destination table entry (chan#). If the memory
ptr refers to data stored in consecutive words, the step size would be 2.

Read single bytes of memory and convert to reading words.

chan# memory ptr

step size—

1 A 0 0

mask shift count

For the range of selected channels, read a byte from memory, apply an optional
mask, shift an optional amount and use the resulting 16-bit word as a reading. If
the mask is zero, no masking will be applied. If the shift count is negative, a right
shift of (–shift) bits is indicated, starting from the data byte positioned in the hi

Data Access Table Formats Mon, Aug 26, 1996 page 3

byte of the word and zero in the lo byte. If the shift count is positive, a left shift of
that many bits is indicated, starting from the byte positioned in the lo byte of the
word and zero in the hi byte. The step size is used to advance the memory ptr
when more than one byte is accessed (count > 1).

Read memory words (by words) with mask, shift, BCD options

chan# memory ptr

step size

1 B 0 0

mask countflags shift

Copy words of memory (accessed by 16-bit read cycles) into consecutive channel
readings. Apply optional mask (0 treated as $FFFF), optional shift (positive=left,
negative=right, zero=none), and optional BCD-to-binary conversion (flags=$80 to
enable conversion). The step size advances memory ptr for count words.

De-multiplex data words

1 F 0 0 chan# memory ptr

step size count— mpxChan

De-multiplex words of memory data according to the value of the mpxChan. The
value of mpxChan, for example, may range from 0–F on successive cycles. Data
from memory (count words using step size) is copied into the readings of
channels numbered from (chan#*mpxValue) to (chan#*mpxValue + count – 1). This
is useful when the hardware interface furnishes multiplexed data according to a
value supplied on digital control lines. Type 1E may be used to place the proper
value on the control lines.

Insert data into memory words

mpxChan memory ptr

step size

1 E 0 0

mask countshift

Sample masked value from mpxChan and insert into memory words. The reading
of mpxChan is masked by mask and left-shifted by shift bits (rotated as a 16-bit
word, so use 16–n to shift right) and inserted into the target memory word(s).
The bits outside the mask in the target word(s) are not modified.

Data Access Table Formats Mon, Aug 26, 1996 page 4

Compute counter differences

2 4 0 0 chan# memory ptr

targBit# countmemory step size

Monitors memory word counter differences. This can be used to monitor
whether an associated cpu in the same VME crate is still working by watching a
counter word at memory ptr that the cpu increments regularly. Optionally, if
targBit# is nonzero, a bit# can be set if the difference from last time is nonzero,
and cleared if the difference is zero. When count > 1, additional memory counter
addresses are obtained from using memory step size, and successive bit#s are
used when targBit# is nonzero. The memory of what the word read last time is
retained in the setting word of the associated target difference chan#, so such
channels cannot be settable.

Copy setting word

2 5 0 0 chan# —

— offset count

Copy setting (or other) field values into reading fields of successive analog
channels. The offset value is the offset to the required field in the ADATA table
entry relative to the reading field. Use offset = 2 for setting field values.

Assemble combined status words

2 6 0 0 chan#

— template# count

—

Assemble words of status from collections of bits found in the BBYTE table, using
templates found in the CSTAT table #24. Each status word is built from a template
found in this table. The reading of chan# is built from template#, and the process
is repeated for successive channels and templates according to count. The
template is an entry from the CSTAT table, each of which consists of up to 8
specifications of 4 bytes each. Each specification is a Byte# word, followed by a
shift count byte and a mask byte. See document Composite Digital Status for
more details.

Data Access Table Formats Mon, Aug 26, 1996 page 5

Copy memory blocks into data stream

2 7 0 0 dStream# memory ptr

#bytes countmemory step size

Copy a block of memory of size #bytes from memory ptr into a data stream with
index dStream#. The beginning of the record written contains a 16-byte header
with the following format:

Yr Mo Da Hr Mn Sc Cy ms

memory ptr —

This header includes the time-of-day the record was written, followed by the
memory address from which the block was copied. If count > 1, then multiple
blocks of memory can be so captured, each including a header. In this case,
subsequent block source memory addresses are derived using the memory step
size. The data stream should be defined in the DSTRM table to have records whose
size reflects both the header size and the data block size. For example, if 1024-
byte blocks of memory were to be captured into a data stream, the data stream
record size as defined would be $410. The time-of-day format is BCD, except for
the ms byte that holds the residual milliseconds of the present cycle. The Cy byte
ranges from $00–14, indicating the present 15Hz cycle.

Access to specific hardware interfaces

De-multiplex binary data bytes

2 9 0 B byte# memory ptr

— initMpx count

This entry assumes a simple hardware interface for multiplexing binary data
bytes. The memory ptr is the address of a multiplexed data byte; memory ptr+1 is
the address of the multiplex select byte. The initMpx is the initial value of the
multiplex select byte; subsequent values are merely incremented from that. The
byte# is the initial entry used in the BADDR table for obtaining the target
addresses for the data byte read from the multiplexed data byte. This simple
multiplexing scheme may be used to bring in many digital data bytes using only
two bytes of I/O interface. (Each IRM, for example, includes an interface to eight
bytes of digital I/O. In the Fermilab Booster HLRF system, two of these bytes are
used in this scheme to bring in 16 bytes of multiplexed digital status.)

Data Access Table Formats Mon, Aug 26, 1996 page 6

Multiplexed A/D used in Fermilab Linac

0 1 0 0 chan# memory ptr

firstChan count— delay

This entry accesses A/D data as interfaced via the original multiplexed A/D
system in use at the Fermilab Linac. The SRMs have since been used to read this
data, so this entry is no longer needed.

Read binary raw data bytes

0 4 0 5 byte# memory ptr

— — count

An array of byte addresses (usually the BADDR table) specified by memory ptr
contains pointers to consecutive bytes of binary status data. They are treated as
memory-mapped data bytes unless the high byte of the address found is $80, 81,
or 82, which carry special significance. [If the high byte is 80, the entry is
assumed to be a pointer to a 1553 data byte in a 1553 command block on the 1553
controller board's memory. If the high byte is 81, the next byte is an SRM address,
and the last two bytes is the control value needed to be sent to the SRM for setting
the byte. If the high byte is 82, the next three bytes specify parameters needed for
PLCQ message queue processing.] In other cases, the 4-byte entry is a memory
address that is accessed to obtain the data byte stored for the byte# given (in the
BBYTE table). The number of successive entries filled in BBYTE is given by count.

Process 1553 command list

0 C 0 0 chan# 1553 command blk ptr

— step size count

0 C 0 5 byte# 1553 command blk ptr

— step size count

Data Access Table Formats Mon, Aug 26, 1996 page 7

The pointer is used to process a sequence of 1553 command blocks, each of which
executes one 1553 command. Each command may result in up to 32 data words
transferred. The count word in this case indicates the number of command blocks
to be processed. For each word read by a command block, a new reading is
stored in consecutive channels. In the binary data case, with the table#=5, each
word read produces two consecutive bytes of binary status readings. Separate
queues are maintained of commands awaiting execution by multiple 1553
controllers. The interrupt following completion of one command passes the next
command, if any, to the controller.

Wait, post-process 1553 data

0 E 1 1 ctrlr# —

— timeout count

Wait for the 1553 interrupt activity to complete. Systems which do 1553 I/O with
interrupts allow overlapping of multiple 1553 controller activity during DAT
processing. This entry must be used to wait for all the readings which have been
queued up for interrupt-driven acquisition to finish. This post-processing of 1553
data collection also copies the data into the readings field of the ADATA table, so
that this entry must be included. The timeout word specifies the time within the
cycle (in 0.5 ms units) after which to give up awaiting all controllers in the range
specified by ctrlr# and count and continue DAT processing of any remaining
entries.

Analog Devices A/D board

This is the driver for a VME digitizer board from Analog Devices.

1 1 0 0 chan# memory ptr

— hdwChan# count

Here, memory ptr is the base address of the board. and hdwChan# is the initial
hardware channel select.

Data Access Table Formats Mon, Aug 26, 1996 page 8

Send data request to SRMs

2 0 0 0 — —

#bytes —SRMnode# reqType

Smart Rack Monitors (SRMs) are used in the Fermilab Linac. As many as 5 SRMs
are connected via ARCnet to a single VME station. This entry sends out a request
message for data to be returned from an SRM. The SRMnode# is usually $7A00,
specifying broadcast to all SRMs. The reqType is $2201 in the case of requesting the
SRM to read and return all its normal cycle data. The #bytes specifies the
maximum size of the return data buffer. This DAT entry does not wait for the
response from the SRMs. That function is specified using the next entry. For more
details, see the document SRM Message Protocols.

Wait for SRM data reply

2 1 0 0 — —

—SRMnode# —deadLine

Await responses from a specific SRM. The deadline word specifies the maximum
time within the current cycle to wait, in 0.5 ms units. In response to a broadcast
request, the order of SRM responses is not determined. But the system's SRM
support knows which have responded since the request was sent. It is necessary
to place this DAT entry before any $22 entries that refer to the same SRM node#.
See the document SRM Message Protocols for more details.

Map SRM data into data pool

offset

2 2 0 0 chan# —

countSRMnode# table#offset

offset

2 2 0 5 byte# —

countSRMnode# table#offset

These entries process the already-received response data from an SRM and copy it

Data Access Table Formats Mon, Aug 26, 1996 page 9

selectively into the data pool. The table#/offset word identifies the SRM data
segment of the response buffer that is to be mapped to the channel or byte data.
See the document SRM Message Protocols for more details.

Copy from IRM A/D circular buffer

dlyChan#

2 8 0 0 chan# register base ptr

countextScan —

The IRM analog IndustryPack board maintains a 64K-byte memory that is
updated by the hardware with 64 channels of analog input digitized and stored
every millisecond. There is room for 512 samples of such data, covering about 0.5
second of time. This entry usually copies the most recently-digitized set of 64
readings into the data pool. If dlyChan# is nonzero, it backs up to a time within
the current cycle given by the reading of the indicated channel. If extScan has the
least bit set, it causes the A/D interface to use an external trigger for its digitaizer
scan. This option is needed for the PET project, where the scan rate is 360Hz
rather than 1000Hz. The register base ptr refers to the analog IP board's register
address. It is usually FFF58300.

Modify/compute data already acquired

Shift data words

0 5 0 0 chan# —

— shift count

Shift reading fields of a sequence of channels. If shift is negative, right shift
reading word with sign extension. If shift is positive, left shift reading word with
zero fill. This has been used to adjust 12-bit A/D readings based on a 2.5 volt
scale so that they appear to come from a 14-bit A/D with a 10 volt scale. This is a
replace operation.

Adjust nonlinear RF diode readings

0 6 0 0 chan# memory ptr

stepSize count— shift

Data Access Table Formats Mon, Aug 26, 1996 page 10

Certain RF amplitude and power readings encountered in the Fermilab Linac
system were measured by detector diodes and therefore have nonlinear
characteristics. This entry linearizes the readings so they can be linearly scaled in
higher level programs the same as any other analog channel readings. Channels
in the indicated range from chan# to chan#+count-1 were linearized according to
one of two formulae if specified by flags in the "conversion flags" field of the
analog descriptor. Flag bit#3 specifies that linearization is to be performed; bit#0
specifies either gradient (0) or power (1) linearization algorithm. If stepSize is
nonzero, the nonlinear data is taken from memory beginning at memory ptr
rather than from the present reading field of the target channel. The shift word
specifies a shift applied to the raw data word before linearization. See document
xxxxx for more details on the linearization algorithms used.

Zero-data pedestal adjustment

0 7 0 0 chan# —

beamBit count— noBeamState

Perform automatic pedestal subtraction for selected channels in the target range
specified by chan# and count. If beamBit is nonzero, it is an optional beam status
bit whose no-beam state is given by the sign bit (bit#15) of noBeamState.. If
beamBit is zero, the default beam status Bit# (009F) and no-beam state ($8000)
will be used. Each channel to be so treated must be indicated by the appropriate
flag bit set (bit#2) in the "conversion flags" byte in the analog descriptor. The
result of this logic is that readings read exactly zero, by definition, for cycles in
which there is no beam. The pedestal value is kept in the setting word of each
channel so treated, so the channel cannot be settable. It may, however, have
motor control, since motor-controlled channels do not have setting values. In
order for the beamBit status to be valid, this entry should occur in the DAT after
the type 04 entry that updates the BBYTE table with binary status bytes.

Capture data on selected cycles

1 6 0 0 chan# —

bit# count— bitState

Scan the readings of a sequence of channels and capture the reading values for
each channel in the range that is marked to need this treatment in its analog
descriptor via bit#1 of the "conversion flags" byte. The capture is done on cycles
when the status bit# matches the bit state given (in the sign bit of bitState);
otherwise, the captured reading is copied over the current reading, thus

Data Access Table Formats Mon, Aug 26, 1996 page 11

preserving the reading that had been captured before. In systems with channels
whose data is valid only during some selected cycles, this entry allows
preserving only valid data readings in the local data pool. When a host computer
requests data from such channels, it will find only the most recent valid readings
there. If it is necessary to also have the current readings, another channel with a
copy of the same channel's reading could be set up normally. The captured data
values are written into the 7th word of an ADATA entry. Note that motor control
cannot be used for such channels, since that same word is used as a motor
countdown word in that case.

Save all readings in present cycle

2 D 0 0 chan# —

— bit# count

For the range of selected channels specified by chan# and count, capture the
present reading fields into the 8th word of the ADATA entries. The bit# word
specifies in the lo 15 bits the status bit# that determines whether this capture
operation is performed. The state is indicated in the ms bit of this same word.
After capture, a host may want to retrieve these values using the listype# defined
for accessing the 8th word of an ADATA entry—before the next occurrence of the
same status bit state.

Sample data facility

1 2 0 0

— offset

Ptr to SAMPL table—

— —

From parameters stored in the SAMPL table, copy a set of channel readings from
the local station to memory (especially on the Vertical Interconnect). A table is
built containing pairs of words, each of which has a channel# word followed by
the data value word. Additional details on this are found in the document
Sample Data Facility for VME Stations. This was used by D0 in the "early days."

Data Access Table Formats Mon, Aug 26, 1996 page 12

Compute ratio

0 8 0 0 chan# —

numerator denominator— threshold

Compute ratio between two analog channel readings, where numerator and
denominator are channel#s, and theshold is the value of the denominator channel
such that, if the absolute value of the denominator reading is below it, the result
chan# reading will be zero; otherwise the result will be numerator/denominator
expressed in volts; i.e., if the readings are equal, the result will be one volt, or
$0CCC. The standard full scale range is 10 volts. If an overflow results, use +/–
full scale, as appropriate.

Compute product

0 9 0 0 chan#

chan1 chan2— shift

offset1 offset2

Compute product of two channels chan1 and chan2, and scale by shift. The
complete formula used is:

(chan1.reading–offset1)*(chan2.reading–offset2)*2^shift
Note that the values of the two offsets are constants, not channel#s.

Compute sum

0 A 0 0 chan# —

— chan1 chan2

Compute sum of two channels chan1 + chan2. Divide result by 2 in order to
prevent overflow. As an example, if the full scales of two readings were both
100.0 amps, then to derive a chan# reading that is the sum of the two, the full
scale of the result channel should be 200.0 amps.

Data Access Table Formats Mon, Aug 26, 1996 page 13

Compute difference

0 B 0 0 chan# —

— chan1 chan2

Compute difference of two channels chan1 – chan2. Divide result by 2 in order to
prevent overflow. As an example, if the full scales of two readings were both
100.0 amps, then to derive a chan# reading that is the difference of the two, the
full scale of the result channel should be 200.0 amps.

Average sequence of channels

0 F 0 0 chan# —

— firstChan count

Average the sequence of channel readings from firstChan to firstChan+count–1
and place the result in the reading field ofchan#.

Beam status counter

1 5 0 0 chan# —

firstBit# count— states

Produce counter readings in target channels by sampling bit# states of sequential
status bit#s. The first bit state, to be compared with the firstBit# status, is in the
sign bit of the states word. Successive status bit#s are compared to successively
lower-numbered bits in the states word. This naturally limits count to 16. When a
status bit matches the indicated state, the counter is cleared; when it differs, the
counter is incremented. One use of this would be to build a channel whose
reading is a counter that measures the #cycles since the last beam cycle. This
feature is described further in the document Monitoring Counters.

Data Access Table Formats Mon, Aug 26, 1996 page 14

Copy words memory–memory

2 A 0 0 chan# source memory ptr

step size countdestination memory ptr

Copy count memory words from source memory ptr to destination memory ptr. The
step size is used to advance the source memory ptr. If the source words are
consecutive, then step size = 2.

Copy bytes memory–memory

2 B 0 0 chan# source memory ptr

step size countdestination memory ptr

Copy count memory bytes from source memory ptr to destination memory ptr. The
step size is used to advance the source memory ptr. If the source bytes are
consecutive, then step size = 1.

Copy FIFO to memory

2 C 0 0 chan# first FIFO address

step size countelapsedTime #words

Copy FIFOs contents into memory. The count word specifies how many FIFOs to
read out. The #words specifies how many words to read out from each FIFO. The
step size is used to advance to th next FIFO address. The destination address is
found from the analog control field of each chan# in sequence. Such channels
may be called waveform channels. (This method was used for the first version of
the swift digitizer IP module. A later version added memory to the board so that
readout of the FIFOs by the CPU was no longer necessary.)

Data Access Table Formats Mon, Aug 26, 1996 page 15

Miscellaneous

Auto-setting from memory

chan#

0 D ltype# bit# memory ptr

countnode# step size

Memory words are copied as setting data, where the channels to be set are
consecutive starting at chan# in node#. This is a way to turn memory data words
into readings in another station, although it can, of course, also reference
channels in the local station by using the local node#. If the bit# (with state value
in the sign bit) is nonzero, it conditions the setting action upon the state of the
indicated status bit.

Invoke local applications

1 D 0 0 — —

maxDelta —initTime deltaTime

Scan all entries of LATBL (local application table) in sequence. For each entry that
is enabled, call the named local application, including the appropriate value for
the call type: initialize, terminate, or cycle. In this way, every enabled local
application is invoked every cycle, giving it a chance to perform whatever it
needs to do on that cycle. Every LA instance must specify an enable Bit# as the
first parameter in its LATBL entry. When the bit is set, the instance is enabled. The
three time word indicated above are diagnostics, all in 0.5 ms units. The initTime
word is the time of starting this DAT entry within the current cycle. The deltaTime
word is the total cpu time used by all the enabled LA's this cycle. The maxDelta
word is the maximum value of deltaTime ever. Since this DAT entry executes
closed loops, it is usually one of the last entries in the DAT, so that it has access to
the latest values in the data pool.

Data Access Table Formats Mon, Aug 26, 1996 page 16

	Introduction
	Condition entry
	Overview
	Editing DAT entries
	DAT entry formats
	Access to specific hardware interfaces
	Modify/compute data already acquired
	Miscellaneous

